According to the observations of an expert for a specific product the following data are valid:

p := 70	Selling price
$c_V := 8$	Variable cost per unit
$C_{f} := 6000$	Fixed cost
x := 0100	Quantity of goods produced and of goods sold
$\mathbf{R}(\mathbf{x}) := \mathbf{p}\mathbf{x} - \mathbf{c}_{\mathbf{V}}\mathbf{x} - \mathbf{c}_{\mathbf{V}}\mathbf{x}$	- C _f Result

Normally the production per year is $x_0 := 100$ with all products being sold during the year.

Due to a damaging event, which fortunately is insured, production and sales shrink by $\Delta x := 3$ units. The insurance company has to refund the foregone profit.

Check the following calculations:

First expert

The normal quantity $x_0 = 100$ yields a profit of $R(x_0) = 200$

This gives a profit per unit of

$$\mathbf{r}(\mathbf{x}_0) := \frac{\mathbf{R}(\mathbf{x}_0)}{\mathbf{x}_0}$$

$$r(x_0) = 2$$

Hence each product not produced (and sold, naturally) would have brought a profit of $r(x_0)$. Since Δx products could not be produced the foregone profit is

$$\Delta \mathbf{R}(\Delta \mathbf{x}) := \mathbf{r}(\mathbf{x}_0) \cdot \Delta \mathbf{x}$$

 $\Delta R(\Delta x) = 6$

Second expert

A second expert determines the same profit function, but he argues as follows:

Normally the profit is $R(x_0) = 200$ with a turnover of $px_0 = 7000$

The share of the profit in the sales volume is $\frac{R(x_0)}{px_0} = 2.8571\%$

Turnover has been reduced by $p \cdot \Delta x = 210$

Applying the percentage rate $\frac{R(x_0)}{px_0} = 2.8571$ %on this reduction in turnover yields a foregone profit of:

$$\frac{R(x_0)}{p x_0} \cdot p\Delta x = 6$$

Third expert

The third expert agees to the underlying profit function, but he points out that the quantity $x_0 = 100$ is normally produced an sold in a year with t := 200 working days.

In other words, every working day yields a profit of $\frac{R\!\left(x_0\right)}{t}=1$.

The downtime was

$$\Delta t := \Delta x \cdot \frac{t}{x_0}$$

A downtime of $\Delta t = 6$ gives a foregone profit of

$$\frac{R(x_0)}{t} \cdot \Delta t = 6$$

What is wrong with all these calculations?