- 1. Given are the following data:
 - C_f = Fixed cost $C_{f} := 98$ $C_v(x) := x^3 - 12x^2 + 60x$ $C_v = Variable cost$

 $\mathbf{C}(\mathbf{x}) \coloneqq \mathbf{C}_{\mathbf{f}} + \mathbf{C}_{\mathbf{v}}(\mathbf{x})$ C = Cost

Determine for x := 0..10[x = quantity] the values C(x) and C(x+1) - C(x).

x =	C(x) =	:	
0	98		1) - C(x) =
1	147	49	
2	178	31	
3	197	19	
4	210	13	
5	223	13	
6	242	19	
7	273	31	
8	322	49	
9	395	73	
10	498	103	
		139	
			1

2. Determine for x := 1..10 and for the function $C(x) := 98 + 60x - 12x^2 + x^3$ the values:

$c_{v}(x) := \frac{C_{v}(x)}{2}$	c _v = variable cost per unit
Х	•

$c_{f}(x) := \frac{C_{f}}{x}$	c _f = fixed cost per unit
Λ	

 $c(x) := \frac{C(x)}{x}$ c = total cost per unit

x =	$c_{V}(x) =$	$c_{f}(x) =$	c(x) =
1	49.00	98.00	147.00
2	40.00	49.00	89.00
3	33.00	32.67	65.67
4	28.00	24.50	52.50
5	25.00	19.60	44.60
6	24.00	16.33	40.33
7	25.00	14.00	39.00
8	28.00	12.25	40.25
9	33.00	10.89	43.89
10	40.00	9.80	49.80

Determine the quantity at which \boldsymbol{c}_{v} is a minimum and at which \boldsymbol{c} is a minimum.

Can be seen from the list, or Mathcad's functions are used:

x := 1 Estimate

 $x_{cvmin} := Minimize(c_v, x)$ Quantity at which c_v is a minimum

 $x_{\text{cvmin}} = 6$

 $x_{cmin} := Minimize(c, x)$ Quantity at which c is a minimum

 $x_{cmin} = 7$

3. Given are the following data

 $C_{f} := 50000$

$$C_{v}(x) := 7000x - 180x^{2} + 2x^{3}$$

$$\mathbf{C}(\mathbf{x}) \coloneqq \mathbf{C}_{\mathbf{f}} + \mathbf{C}_{\mathbf{v}}(\mathbf{x})$$

At which quantity is the minimum of of the first derivative of C(x), the minimum of $c_v(x)$ and the minimum of c(x)?

$$\frac{d}{dx}C(x) \rightarrow 7000 - 360 \cdot x + 6 \cdot x^{2}$$
$$C'(x) \coloneqq \frac{d}{dx}C(x)$$

x := 1 Estimate

 $x_{C'\min} := Minimize(C', x)$

Quantity at which C' is a minimum

 $x_{C'min} = 30$

$$c_{V}(x) := \frac{C_{V}(x)}{x}$$

 $x_{cvmin} \coloneqq \text{Minimize} \Bigl(c_v, x \Bigr) \qquad \quad \text{Quantity at which } c_v \text{ is a minimum}$

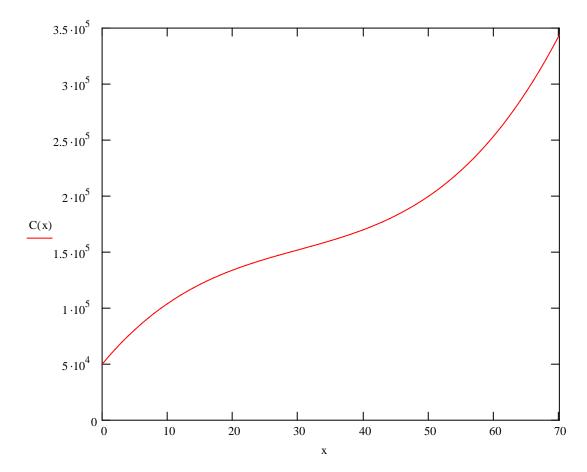
 $x_{\text{cvmin}} = 45$

$$c(x) := \frac{C(x)}{x}$$

 $x_{cmin} := Minimize(c, x)$ Quantity at which c is a minimum

 $x_{cmin} = 50$

4. For x := 0..70 the function from assignment 3 can be illustrated as follows:

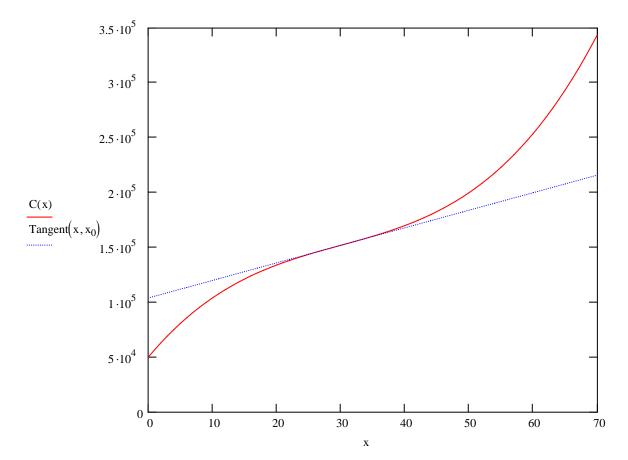


How can the minima of C', c_v and c be found graphically?

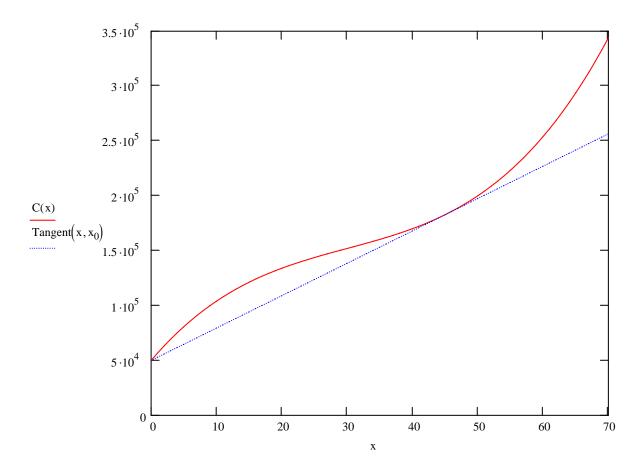
$$Tangent(x, x_0) := C(x_0) - C'(x_0) \cdot x_0 + C'(x_0) \cdot x$$

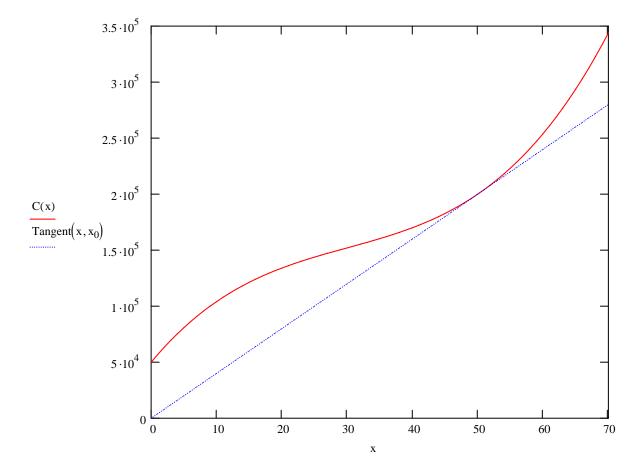
Definitions to make the software solve the problem, not necessary for understanding it.

 $x_0 := x_{C'min}$



 $x_0 := x_{cvmin}$





5. Given are the following data:

$$C_{f} := 2000$$

$$C_{v}(x) := 0.2x^{2}$$

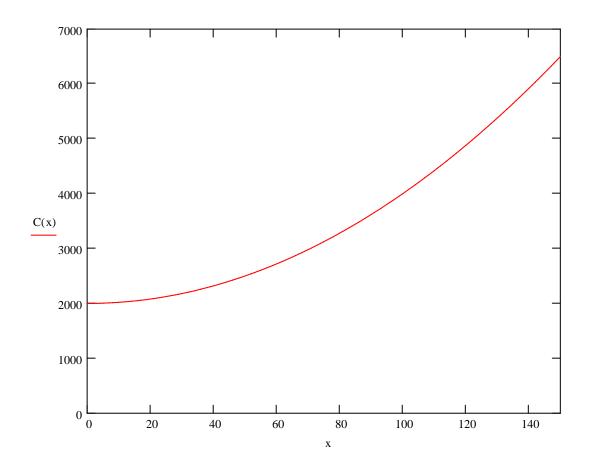
$$C(x) := C_f + C_v(x)$$

Which is the the value of c_v for $x_0 := 80$?

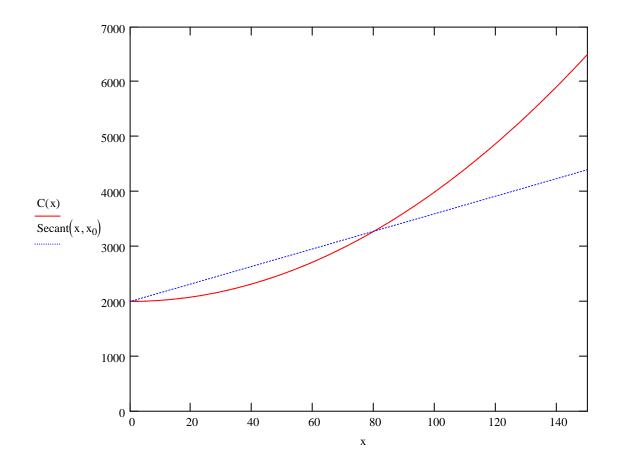
$$c_{v}(x) := \frac{C_{v}(x)}{x}$$
$$x_{0} = 80$$
$$x := x_{0}$$
$$c_{v}(x) = 16$$

If $c_v(x_0)$ were regarded as a constant, what would the cost function look like? Use the following figure to draw this cost function.

x := 0 .. 150



$$\operatorname{Secant}(x, x_0) := C_f + \frac{C_v(x_0)}{x_0} \cdot x$$



6. Given are the following data:

 $C_f := 2000$

 $C_v(x) := 0.2x^2$

$$\mathbf{C}(\mathbf{x}) \coloneqq \mathbf{C}_{\mathbf{f}} + \mathbf{C}_{\mathbf{v}}(\mathbf{x})$$

Which is the value of C' for $\,x_0^{}=\,80\,$?

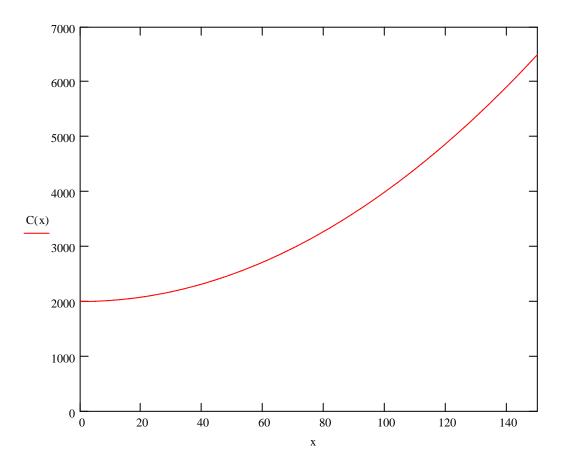
C'(x) := 0.4x

 $x := x_0$

 $C'(x_0) = 32$

If $C'(x_0)$ were regarded as a constant, what would the cost function look like? Use the following figure to draw this cost function.

x := 0..150



$$Tangent(x, x_0) \coloneqq C(x_0) - C'(x_0) \cdot x_0 + C'(x_0) \cdot x_0$$

